L’intelligenza artificiale ha fatto un enorme passo avanti, su un tabellone di gioco
Tra i breakthrough of the iyear 2016: in gennaio aveva vinto il campione europeo, a marzo ha vinto il campione mondiale: AlphaGo, un sistema di intelligenza artificiale di Google, è riuscire a superare un confine che molti ricercatori ritenevano impossibile, tanto da essere menzionato da Nature come uno dei risultati scientifici del 2016. Un confine posto da un gioco vecchio di 2500 anni.
ATTUALITÀ – Da almeno 2500 anni, in Estremo Oriente, le persone si sfidano a Go, un gioco che, malgrado le sue regole semplici, è molto complesso dal punto di vista strategico. Proprio queste sue caratteristiche lo hanno reso per tanti anni il “sacro Graal” dell’intelligenza artificiale: non bastava un algoritmo che applicasse le regole, serviva un algoritmo capace di pensare strategicamente come un uomo. Molti ritenevano che un computer non sarebbe mai riuscito ad avere una tale raffinatezza di pensiero e a marzo di quest’anno si sono dovuti ricredere. AlphaGo, un programma di intelligenza artificiale del laboratorio di ricerca DeepMind di Google, ha battuto a marzo il campione mondiale di Go, il coreano Lee Sedol, per 4 a 1. L’intelligenza artificiale, dunque, ha fatto un altro enorme passo avanti, tanto che Nature e Science l’hanno inserita tra i risultati scientifici più rilevanti dell’anno passato.
Già nel gennaio del 2016 AlphaGo aveva vinto il campione europeo di Go (vittoria per 5 a 0), preannunciando in un certo senso quello che sarebbe successo a marzo.
Non è la prima volta che un computer vinceva un umano ad un gioco di strategia. Venti anni prima di AlphaGo, il celebre Deep Blue della IBM aveva vinto il campione mondiale di scacchi Garry Kasparov. Fu uno shock. Vi fu chi festeggiò, vedendo nella vittoria un passo fondamentale per la tecnologia, vi fu chi ne fu profondamente terrorizzato, pensando che il futuro distopico alla Blade Runner non fosse ormai così lontano. Tuttavia quella di Deep Blue fu una vittoria abbastanza “semplice”: gli scacchi sono sì un gioco complesso, ma gran parte della complessità deriva dall’insieme di regole.
Go, invece, è diverso. Come abbiamo accennato le regole sono poche. Sostanzialmente, si tratta di disporre delle pietre (bianche o nere) su una griglia. Chi riesce a circondare la pietra di un avversario la cattura, eliminandola dal tabellone. Vi sono poi una serie di regole minori (poche, in realtà) per evitare ad esempio che alcune mosse possano essere ripetute all’infinito. Vince chi conquista più area o “territorio” nel tabellone di gioco. Stop. Tuttavia, grazie a questa libertà data al giocatore, Go risulta particolarmente adatto a sviluppare un pensiero e un’azione di gioco strategica. La fortuna ha un ruolo quasi nullo in Go, tutto dipende dalla mente di chi gioca. Per questo rappresenta una sfida per l’intelligenza artificiale.
Come ha fatto AlphaGo a vincere? Innanzitutto, AlphaGo non è stato creato esplicitamente per vincere al gioco. Anzi, una delle prime sfide è stato proprio il fatto che il programma doveva capire e imparare da solo le regole. Lo ha fatto egregiamente, come ha dimostrate con la prima vittoria contro il campione europeo. La seconda vittoria non ha fatto altro che confermare che l’intelligenza artificiale sviluppata da Google è riuscita a emulare, superandola, la capacità di intuizione e di pianificazione strategica umana. “AlphaGo ha due sistemi “neuronali”, ha spiegato David Silver, ricercatore in robotica alla Google DeepMind, “il primo è quello che noi chiamiamo “sistema di scelta” [policy network] e il secondo è invece il “sistema di valori”. Il compito di AlphaGo è quello di ridurre l’enorme complessità delle relazioni tra i due sistemi, per trasformarlo in un qualcosa di più semplice e maneggevole. Ad esempio, invece di considerare le centinaia di mosse possibili rispetto a una posizione, AlphaGo si concentra solo su un ristretto numero di azioni che sembrano più promettenti, selezionate dal sistema di scelta. Il sistema di valori, invece, è utilizzato per ridurre la profondità della ricerca. Questo significa che invece di considerare le possibilità fino alla fine del gioco, diciamo 300 mosse, considera solo le possibilità fino alle prossime 20 mosse”. La combinazione di questi due sistemi, quindi, non dà un sistema predittivo in senso classico, ma riproduce un qualcosa di simile alla nostra capacità di immaginazione.
Tuttavia, AlphaGo ha qualcosa che nemmeno il giocatore più esperto del mondo potrà mai avere. Nelle parole di Silver: “gli esseri umani hanno delle debolezze. Possono sbagliare, si stancano dopo ore di gioco. Soprattutto, un essere un umano può giocare mille partite di Go in un anno, AlphaGo può giocare 3 milioni di partite al giorno, imparando e praticando il gioco oltre i livelli consentiti all’uomo”. In altre parole, AlphaGo ha vinto gli esseri umani per il semplice fatto che questi ultimi sono, appunto, esseri umani. Un qualcosa che su cui dovremmo riflettere in profondità negli anni a venire.
Leggi anche: I miti e i fatti sull’intelligenza artificiale
Pubblicato con licenza Creative Commons Attribuzione-Non opere derivate 2.5 Italia.